Copied to
clipboard

G = C23⋊Dic7order 224 = 25·7

The semidirect product of C23 and Dic7 acting via Dic7/C7=C4

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C23⋊Dic7, C23.2D14, (C2×C4)⋊Dic7, (C2×C28)⋊1C4, C72(C23⋊C4), (C2×D4).3D7, (C2×C14).2D4, (C22×C14)⋊2C4, (D4×C14).6C2, C23.D72C2, C22.2(C7⋊D4), C2.5(C23.D7), C22.3(C2×Dic7), C14.15(C22⋊C4), (C22×C14).6C22, (C2×C14).29(C2×C4), SmallGroup(224,40)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C23⋊Dic7
C1C7C14C2×C14C22×C14C23.D7 — C23⋊Dic7
C7C14C2×C14 — C23⋊Dic7
C1C2C23C2×D4

Generators and relations for C23⋊Dic7
 G = < a,b,c,d,e | a2=b2=c2=d14=1, e2=d7, ab=ba, dad-1=ac=ca, eae-1=abc, ebe-1=bc=cb, bd=db, cd=dc, ce=ec, ede-1=d-1 >

2C2
2C2
2C2
4C2
2C22
2C4
4C22
4C22
28C4
28C4
2C14
2C14
2C14
4C14
2D4
2D4
14C2×C4
14C2×C4
2C28
2C2×C14
4Dic7
4C2×C14
4Dic7
4C2×C14
7C22⋊C4
7C22⋊C4
2C2×Dic7
2C2×Dic7
2C7×D4
2C7×D4
7C23⋊C4

Smallest permutation representation of C23⋊Dic7
On 56 points
Generators in S56
(1 54)(2 22)(3 56)(4 24)(5 44)(6 26)(7 46)(8 28)(9 48)(10 16)(11 50)(12 18)(13 52)(14 20)(15 30)(17 32)(19 34)(21 36)(23 38)(25 40)(27 42)(29 47)(31 49)(33 51)(35 53)(37 55)(39 43)(41 45)
(1 8)(2 9)(3 10)(4 11)(5 12)(6 13)(7 14)(15 55)(16 56)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 49)(24 50)(25 51)(26 52)(27 53)(28 54)(29 36)(30 37)(31 38)(32 39)(33 40)(34 41)(35 42)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 48)(16 49)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 56)(24 43)(25 44)(26 45)(27 46)(28 47)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 54 8 47)(2 53 9 46)(3 52 10 45)(4 51 11 44)(5 50 12 43)(6 49 13 56)(7 48 14 55)(15 35 22 42)(16 34 23 41)(17 33 24 40)(18 32 25 39)(19 31 26 38)(20 30 27 37)(21 29 28 36)

G:=sub<Sym(56)| (1,54)(2,22)(3,56)(4,24)(5,44)(6,26)(7,46)(8,28)(9,48)(10,16)(11,50)(12,18)(13,52)(14,20)(15,30)(17,32)(19,34)(21,36)(23,38)(25,40)(27,42)(29,47)(31,49)(33,51)(35,53)(37,55)(39,43)(41,45), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,55)(16,56)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,43)(25,44)(26,45)(27,46)(28,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,54,8,47)(2,53,9,46)(3,52,10,45)(4,51,11,44)(5,50,12,43)(6,49,13,56)(7,48,14,55)(15,35,22,42)(16,34,23,41)(17,33,24,40)(18,32,25,39)(19,31,26,38)(20,30,27,37)(21,29,28,36)>;

G:=Group( (1,54)(2,22)(3,56)(4,24)(5,44)(6,26)(7,46)(8,28)(9,48)(10,16)(11,50)(12,18)(13,52)(14,20)(15,30)(17,32)(19,34)(21,36)(23,38)(25,40)(27,42)(29,47)(31,49)(33,51)(35,53)(37,55)(39,43)(41,45), (1,8)(2,9)(3,10)(4,11)(5,12)(6,13)(7,14)(15,55)(16,56)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,49)(24,50)(25,51)(26,52)(27,53)(28,54)(29,36)(30,37)(31,38)(32,39)(33,40)(34,41)(35,42), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,48)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,43)(25,44)(26,45)(27,46)(28,47), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,54,8,47)(2,53,9,46)(3,52,10,45)(4,51,11,44)(5,50,12,43)(6,49,13,56)(7,48,14,55)(15,35,22,42)(16,34,23,41)(17,33,24,40)(18,32,25,39)(19,31,26,38)(20,30,27,37)(21,29,28,36) );

G=PermutationGroup([[(1,54),(2,22),(3,56),(4,24),(5,44),(6,26),(7,46),(8,28),(9,48),(10,16),(11,50),(12,18),(13,52),(14,20),(15,30),(17,32),(19,34),(21,36),(23,38),(25,40),(27,42),(29,47),(31,49),(33,51),(35,53),(37,55),(39,43),(41,45)], [(1,8),(2,9),(3,10),(4,11),(5,12),(6,13),(7,14),(15,55),(16,56),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,49),(24,50),(25,51),(26,52),(27,53),(28,54),(29,36),(30,37),(31,38),(32,39),(33,40),(34,41),(35,42)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,48),(16,49),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,56),(24,43),(25,44),(26,45),(27,46),(28,47)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,54,8,47),(2,53,9,46),(3,52,10,45),(4,51,11,44),(5,50,12,43),(6,49,13,56),(7,48,14,55),(15,35,22,42),(16,34,23,41),(17,33,24,40),(18,32,25,39),(19,31,26,38),(20,30,27,37),(21,29,28,36)]])

C23⋊Dic7 is a maximal subgroup of
C23.D28  C23.2D28  C23.3D28  C23.4D28  C24⋊Dic7  (C22×C28)⋊C4  C422Dic7  C423Dic7  C23⋊C45D7  D7×C23⋊C4  C24⋊D14  C22⋊C4⋊D14  (D4×C14)⋊10C4  2+ 1+4.2D7  2+ 1+42D7
C23⋊Dic7 is a maximal quotient of
C24.Dic7  C24.D14  (C2×C28)⋊C8  C24⋊Dic7  (D4×C14)⋊C4  C4⋊C4⋊Dic7  (C22×C28)⋊C4  C422Dic7  C42.Dic7  C423Dic7  C42.3Dic7

41 conjugacy classes

class 1 2A2B2C2D2E4A4B4C4D4E7A7B7C14A···14I14J···14U28A···28F
order1222224444477714···1414···1428···28
size1122244282828282222···24···44···4

41 irreducible representations

dim1111122222244
type+++++--++
imageC1C2C2C4C4D4D7Dic7Dic7D14C7⋊D4C23⋊C4C23⋊Dic7
kernelC23⋊Dic7C23.D7D4×C14C2×C28C22×C14C2×C14C2×D4C2×C4C23C23C22C7C1
# reps12122233331216

Matrix representation of C23⋊Dic7 in GL4(𝔽29) generated by

91400
152000
18441
2501425
,
24132122
16508
002024
00169
,
28000
02800
00280
00028
,
165240
2421519
001922
00521
,
21131
231120
18441
331812
G:=sub<GL(4,GF(29))| [9,15,18,25,14,20,4,0,0,0,4,14,0,0,1,25],[24,16,0,0,13,5,0,0,21,0,20,16,22,8,24,9],[28,0,0,0,0,28,0,0,0,0,28,0,0,0,0,28],[16,24,0,0,5,2,0,0,24,15,19,5,0,19,22,21],[2,23,18,3,11,11,4,3,3,2,4,18,1,0,1,12] >;

C23⋊Dic7 in GAP, Magma, Sage, TeX

C_2^3\rtimes {\rm Dic}_7
% in TeX

G:=Group("C2^3:Dic7");
// GroupNames label

G:=SmallGroup(224,40);
// by ID

G=gap.SmallGroup(224,40);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,24,121,188,579,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^14=1,e^2=d^7,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e^-1=a*b*c,e*b*e^-1=b*c=c*b,b*d=d*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^-1>;
// generators/relations

Export

Subgroup lattice of C23⋊Dic7 in TeX

׿
×
𝔽